
1

DTN

SCAWG
Network Technology Workshop

Reston, VA
10 August 2006

Scott BurleighScott Burleigh
Systems Engineering SectionSystems Engineering Section

Jet Propulsion Laboratory, California Institute of TechnologyJet Propulsion Laboratory, California Institute of Technology
818.393.3353

Scott.Burleigh@jpl.nasa.gov

2

Delay-Tolerant Networking (DTN)

• An overlay network.
– DTN “bundle protocol” (BP) is to IP as IP is to Ethernet.
– A TCP connection within an IP-based network may be one “link”

of a DTN end-to-end data path; a deep-space R/F transmission
may be another.

• Reliability achieved by retransmission between relay
points within the network, not end-to-end retransmission.

• Route computation has temporal as well as topological
elements, e.g., a schedule of planned contacts.

• Forwarding at router is automatic but not necessarily
immediate: store-and-forward rather than “bent pipe”.

• Contain DOS attacks: reciprocal inter-node suspicion.

3

DTN Stack Elements for Deep Space

CCSDS AOS CCSDS Prox-1

R/F, optical

TCP (retransmission)

Ethernet

IP (intra-Internet routing)

wire

Transport layer

Network layer

Link layer

Physical layer

LTP (retransmission)

Bundle Protocol (intra-DTN routing)

CCSDS encapsulation packets

File Transfer Asynchronous Messaging

User application

Application layer

4

An End-to-end Path

Network of internets spanning dissimilar environments

BP BP BP

wire

TCP

IP

Ethernet Ethernet

wire fiber

SONET

IP

X-band

AOS

CCSDS
packets

LTP

fiber

SONET

IP

TCP

X-band

AOS

CCSDS
packets

LTP

internet a internet b

App

App

App App

App

Appcustody transfer

5

DTN Operations In Deep Space

Earth

Mars

workstation

antenna complex
Internet

TCP/IP over wireless LAN
weather station

relay orbiter 1

relay orbiter 2

deep space R/F link,
with LTP link ARQ

TCP/IP over Proximity-1 R/F link

6

DTN Current Status

• Specifications and documentation
– Internet Draft for the DTN architecture
– Advanced Internet Drafts for both the BP and LTP protocol

specifications
• Plan to submit these as Experimental RFCs within IETF in 2006

• Implementations
– BP implementations

• DTN2: open source reference implementation (Intel, UC Berkeley)
• ION: designed for space flight (JPL)

– LTP implementations
• Reference implementation in Java (Ohio University)
• C++ implementation for terrestrial applications (Trinity College)
• C implementation designed for space flight (JHU/APL)

7

Remaining Problems

• Route computation algorithms
– Very different types of contacts

• Scheduled
• Opportunistic
• Predicted

– Traditional metrics (distance vector, link state) don’t work.
• They don’t take timing into account: a two-hop path available in 10

minutes may be better than a one-hop path available tomorrow.
• Topology may change too rapidly for protocols to track.

• Congestion control
– TCP congestion window and ICMP source quench are end-to-

end, may not reduce data injection rate at source until
congestion collapse has already occurred.

8

ION

• JPL’s implementation of the DTN Bundle Protocol,
designed for operations in deep space – Interplanetary
Internet.
– Static routing tables are practical for now, because the number

of communicating nodes will remain small for decades.
• Link initiation and termination remain the job of flight software, not

the DTN router.
• Outbound bundle handling:

– Automatically issued on the appropriate links during the time
the links are enabled.

– Queued up for future transmission while the links are dormant.
– Includes a congestion control system based on BP custody

transfer.

9

Constraints

• Interplanetary internet is a classic DTN scenario:
– Long signal propagation times, intermittent links.

• Links are very expensive, usually oversubscribed.
• Immediate delivery of partial data is often OK.
• Limited processing resources on spacecraft:

– Slow (radiation-hardened) processors
– Relatively ample memory
– Solid-state storage

• For inclusion in flight software:
– Processing efficiency is important.
– Must port to VxWorks real-time O/S.
– No malloc/free; must not crash other flight software.

10

Applications

• Brief messages (typically less than 64 KB).
– One bundle per message.
– CCSDS Asynchronous Message Service (AMS) is being

considered.

• Files, often structured in records.
– Need to be able to deliver individual records as they arrive, so

most likely one bundle per record.
– CCSDS File Delivery Protocol (CFDP) is the standard.

• Streaming voice and video for Constellation.
• In general, we expect relatively small bundles.

11

Supporting infrastructure

• psm (Personal Space Management): high-speed dynamic
allocation of memory within a fixed pre-allocated block.
– Built-in memory trace functions for debugging.

• sdr (Spacecraft Data Recorder): robust embedded object
persistence system; database for non-volatile state.
– Performance tunable between maximum safety, maximum speed.
– Again, built-in trace functions for usage debugging.

• zco (Zero-Copy Objects): reduce protocol layer overhead.
• platform O/S abstraction layer for ease of porting.
• Written in C for small footprint, high speed.
• Mostly inherited from Deep Impact flight software – flight proven.

12

Operating System

PSM
SmList

ION Interplanetary Overlay Network libraries and daemons
ZCO Zero-copy objects capability: minimize data copying up and down the stack
SDR Spacecraft Data Recorder: persistent object database in shared

memory, using PSM and SMList
SmList linked lists in shared memory using PSM
PSM Personal Space Management: memory management within a

pre-allocated memory partition
Platform common access to O/S: shared memory, system time, IPC mechanisms
Operating System POSIX thread spawn/destroy, file system, time

Implementation Layers

SDR
ZCO

ION

Platform

13

Node architecture

• ION is database-centric rather than daemon-centric.
– Each node is a single SDR database.

• Bundle protocol API is local functions in shared libraries,
rather than inter-process communication channels.

• Multiple independent processes – daemons and
applications, as peers – share direct access to the node
state (database and shared memory) concurrently.

14

Node architecture (cont’d)

• Separate process for each scheme-specific forwarder.
– Forwarder is tailored to the characteristics (endpoint naming,

topology) of the environment implied by the scheme name.

• Separate process for each convergence-layer input and
output.
– No assumption of duplex connectivity.

• Schemes (forwarders) and convergence-layer adapter
points can be added while the node is running.

15

inducts

incomplete
(inbound)
bundles

inbound
bundles

endpoints

all bundles (waiting
for TTL expiration)

schemes

outducts outbound
bundles

DTN database

timeline

convergence
layer input

convergence
layer output

ION clock

application process

bundles to
forward

forwarder

CL
protocols

16

Compressed Bundle Header Encoding
(CBHE)

• For a CBHE-conformant scheme, every endpoint ID is
scheme_name:element_nbr.service_nbr

• 65,535 schemes supported.
• Up to 16,777,215 elements in each scheme.

– Element ~= node.
– So the number of nodes addressable by scheme/element is 256

times the size of IPv4 address space.

• Up to 65,535 services in each scheme.
– Service ~= “demux token” or IP protocol number.

17

CBHE (cont’d)

• For bundles traveling exclusively among nodes whose IDs share the
same CBHE-conformant scheme name, primary bundle header
length is fixed at 34 bytes.
– Dictionary not needed, so it’s omitted.
– All administrative bundles are service number zero.

Scheme SSP

Destination offsets

Scheme SSP

Source offsets

Scheme SSP

Report-to offsets

Scheme SSP

Custodian offsets

Common
Scheme
number

Destination
Element number

Source
Element number

Report-to
Element number

Custodian
Element number

Service
Number

for source &
destination

Non-CBHE

CBHE

18

Features implemented (and not)

• Conforms to current BP specification (version 4,
December 2005).

• Implemented: custody transfer, status reports, delivery
options, priority, reassembly from fragments, for both
CBHE and non-CBHE bundles.
– Forwarder for the ipn scheme.
– Convergence-layer adapters for TCP, “SPOF”.
– Congestion control based on custody transfer.

• Partially implemented: flooding.
• Not implemented: fragmentation, application-initiated

acknowledgements, security, multicast.

19

Performance

• Maximum data rate clocked to date is 352 Mbps.
– Over a Gigabit Ethernet (single hop) between two dual-core

3GHz Pentium-4 hosts running Fedora Core 3, each with 800
MHz FSB, 512MB of DDR400 RAM, 7200 rpm hard disk.

– sdr tuned to maximum speed and minimum safety.
– No custody transfer.

• At the other extreme: running over a two-hop path on a
100-Mbps Ethernet between older Pentiums, with
custody transfer over each hop:
– With sdr tuned to maximum speed, about 40 Mbps.
– With sdr tuned to maximum safety, only 3 to 4 Mbps.

20

Congestion Control Results

• No data loss and no router failure in any test.
• With zero artificial delay, the throughput rate measured between two nodes with

no intervening routers was 300 Mbps.
• Throughput rates for other topologies and imposed delays are as shown:

0 5 10 15 20 25 30 35 40 45 50
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

5 nodes
4 nodes
3 nodes
2 nodes
Theoretical

Reception Delay (mSec)

Th
ro

ug
hp

ut
 (M

bi
ts

 /
se

c)

21

Ports to date

• Linux (Red Hat 8+, Fedora Core 3)
– 32-bit Pentium
– 64-bit AMD Athlon 64

• Interix (POSIX environment for Windows)
• VxWorks (but not tested yet)

22

Evaluation copies distributed to date

• NASA
– Goddard Space Flight Center
– Marshall Space Flight Center
– Ames Research Center
– Glenn Research Center
– Constellation project

• ESA (European Space Agency)
• CNES (the French national space agency)
• Johns Hopkins University Applied Physics Laboratory
• MITRE Corporation
• Interface & Control Systems

23

Backup slides

24

Deep Space Communications Today

• Communication opportunities
are scheduled, based on orbit
dynamics & operations plans.

• Transmission initiation is
manual, per schedule.

• Transmission direction is
manual: point antenna, start
transmitting when the right
spacecraft is listening.

• Retransmission is manual: on
loss of data, command repeat.

• More recently (MER), manual
forwarding through relay point:
command to Odyssey or MGS.

25

What’s Wrong With That?

• This mission communications model has
worked fine for over forty years; we’ve done a
lot of good science.

• But the status quo is:
– Labor-intensive

• Communication operations cost is a large fraction
of the budget for each mission.

• Risk of human error mandates mitigations that
further increase cost.

– Program-limiting
• Cost and risk increase with the number of links

between communicating entities.
• As cross-links among spacecraft become common

(Mars network, lunar exploration Constellation),
cost and risk increases are non-linear with increase
in the number of spacecraft.

26

An Alternative

• The Internet has come to be widely used to conduct scientific
investigations, for both science and engineering telemetry.
– For example, the High-Performance Wireless Research and Education

Network (HPWREN) in southern California.
• Astronomy.
• Ecology.
• Geophysics.

• So why not use it for deep space science missions too?
– Minimize cost (automation, COTS).
– Minimize risk (huge installed base).

27

It Works Fine in Near-Earth Space
• Space Communication Protocol Standards (SCPS)

– TCP options that improve performance on satellite links, where
data loss is more often due to corruption than to congestion

– international standard
• Operating Missions as Nodes on the Internet (OMNI)

– UoSAT-12, an HTTP server in orbit
– CHIPSat, used Internet protocols on all communication links
– CANDOS on STS-107, used mobile IP

• IP stack would likely also work well in cislunar space and in
surface networks on other planets.

28

So What’s the Problem?

• Interplanetary space is a qualitatively different
communication environment.
– Internet, near-Earth, and planetary surface networks are all

characterized by:
• Very short distances between communicating nodes, therefore very

brief signal propagation delays (up to about a second).
• Continuous end-to-end connectivity. A lapse in connectivity on any

single link is treated as an anomaly and allowed to terminate
communication.

– Any network spanning interplanetary space would be
characterized by:

• Long distances between communicating nodes, lengthy signal
propagation delays (e.g., 8-20 minutes from Earth to Mars).

• Routine lapses in connectivity on all links of end-to-end path.

29

It’s All About Delay

• Network disruption is, essentially, unpredictable delay.
– Case 1: continuous connectivity but client is 56 million miles from

server. Response to query arrives 10 min. after query is issued.
– Case 2: client and server are in adjacent offices but router is

powered off for 10 minutes. Response to query arrives 10 min.
after query is issued.

• Key effect of delay: reliable transmission of a given byte
of data can take an arbitrarily long time.
– Transmission can be lost due to corruption, N times.
– NAK can be lost due to corruption, N times.
– Disruption can delay transmission of NAK (or retransmission of

data) by an arbitrarily long time.

30

Effects of Long and/or Variable Delay

• Connection establishment could take more time than
entire communication opportunity.
– So protocols must be connectionless.

• Transmission history can’t be used to predict round-trip
times.
– So communication timeout interval computation must rely on link

state information rather than timing statistics.

• End-to-end retransmission would reserve resources
(retransmission buffer) at originator for entire duration of
the transaction – possibly days or weeks.
– So retransmission should be between relay points within the

network rather than end-to-end: custody transfer.

31

Effects of Delay (cont’d)

• In-order stream delivery could be stuck for a long time,
waiting for byte N to arrive before delivering byte N + 1.
– So out-of-transmission-order delivery is needed – multiple

concurrent transmissions.
– So data must be structured in transmission blocks (e.g.,

messages) for concurrent retransmission – not streams.

• But reliable transmission of any single block can take an
arbitrarily long time.
– So any number of message transmissions might be in progress

at the moment a computer is rebooted or power cycled.
– So retransmission buffers should reside in non-volatile storage –

not memory – to minimize risk of massive transmission failure.

32

Interplanetary IP – the Bottom Line

• None of these effects preclude the use of the IP network
protocol (IP datagram transmission) itself.

• But:
– TCP isn’t suitable.

• Connections, streaming, end-to-end retransmission, in-order delivery.
• Retransmission buffers are in memory.
• Timeout intervals are computed from transmission history.

– The BGP external routing protocol uses TCP, so it’s not suitable.
– Internal routing protocols use history-based timeouts to detect

route failures, so routine loss and re-establishment of connectivity
would incorrectly cause route failure to be inferred and propagated
to routing tables. Not suitable.

• The off-the-shelf IP stack doesn’t work for deep space.

33

Where Does That Leave Us?

• We could simply use IP anyway.
– Omit routing protocols; just manage static routes.
– Omit TCP, leave reliability to the applications and/or ops.

• But this would be functionally the same as status quo.
– TCP-reliant Internet applications wouldn’t work.
– Would still be labor-intensive and program-limiting.

• Alternatively: develop a new automated network
architecture that is tolerant of long and/or arbitrary delay.
– TCP-reliant Internet applications still won’t work, but in some

cases we can proxy them into the new infrastructure.
– Reduce cost and risk: automate network functions, automate

retransmission, integrate easily with Internet.

34

Processing Flow
Application

send receive

delivery
queue

forwarding
queue

Forwarder

transmission
queue

CLO

local protocol

CLI

local protocol dispatch

ION database

35

CLI

• Acquire bundle from sending CLO, using the underlying CL protocol.
• Dispatch the bundle.

36

dispatch

• Local delivery: if an endpoint in the database (that is, an endpoint in
which the node is registered) matches the destination endpoint ID,
append bundle to that endpoint’s delivery queue.

• Forwarding: append bundle to forwarding queue based on scheme
name of bundle’s destination endpoint ID, with “proximate
destination EID” initially set to the bundle’s destination EID.
– Forwarder later appends it to outduct’s transmission queue; see ipn

forwarder below.

37

CLO

• Pop bundle from outduct’s transmission queue.
• As necessary, map the associated destination duct name to a

destination SAP in the namespace for the duct’s CL protocol.
(Otherwise use the default destination SAP specified for the duct.)

• Invoke that protocol to transmit the bundle to the selected
destination SAP.

38

The “ipn” scheme

• CBHE-conformant, so every EID is:
ipn:element_nbr.service_nbr

– “Elements” notionally map to Constellation elements, such as the Crew
Exploration Vehicle.

– Services:
• 1 currently used for test.
• 2 could be CFDP traffic.
• 3 to N could be traffic for Remote AMS applications.

– Element number might additionally serve as AMS continuum number.

39

ipn-specific forwarder

• Use proximate-destination element number as index into array
of “plans”; use source element number and/or service number to
select rule in that plan (or use default rule).

• If rule cites another EID:
– If non-ipn scheme, append (with proximate destination EID

changed) to that scheme’s forwarding queue.
– Else, iterate with new proximate-destination element number.

• Otherwise (rule is outduct reference and, possibly, name of
destination induct):
– Insert bundle into the transmission queue for that outduct, noting

the associated destination induct name [if any].

